Lifting Central Invariants of Quantized Hamiltonian Actions
نویسنده
چکیده
Let G be a connected reductive group over an algebraically closed field K of characteristic 0, X an affine symplectic variety equipped with a Hamiltonian action of G. Further, let ∗ be a G-invariant Fedosov star-product on X such that the Hamiltonian action is quantized. We establish an isomorphism between the center of the quantum algebra K[X ][[~]] and the algebra of formal power series with coefficients in the Poisson center of K[X ].
منابع مشابه
The symplectic vortex equations and invariants of Hamiltonian group actions
In this paper we define invariants of Hamiltonian group actions for central regular values of the moment map. The key hypotheses are that the moment map is proper and that the ambient manifold is symplectically aspherical. The invariants are based on the symplectic vortex equations. Applications include an existence theorem for relative periodic orbits, a computation for circle actions on a com...
متن کاملSe p 19 99 J - holomorphic curves , moment maps , and invariants of Hamiltonian group actions
3 Invariants of Hamiltonian group actions 17 3.1 An action functional . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Symplectic reduction . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Hamiltonian perturbations . . . . . . . . . . . . . . . . . . . . 24 3.4 Moduli spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5 Fredholm theory . . . . . . . . . . . . . . . . . . ...
متن کاملJ -holomorphic curves, moment maps, and invariants of Hamiltonian group actions
3 Invariants of Hamiltonian group actions 17 3.1 An action functional . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Symplectic reduction . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Hamiltonian perturbations . . . . . . . . . . . . . . . . . . . . 24 3.4 Moduli spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5 Fredholm theory . . . . . . . . . . . . . . . . . . ...
متن کاملSymplectic Group Actions and Covering Spaces
For symplectic group actions which are not Hamiltonian there are two ways to define reduction. Firstly using the cylinder-valued momentum map and secondly lifting the action to any Hamiltonian cover (such as the universal cover), and then performing symplectic reduction in the usual way. We show that provided the action is free and proper, and the Hamiltonian holonomy associated to the action i...
متن کاملCombinatorial Invariants of Algebraic Hamiltonian Actions
To any Hamiltonian action of a reductive algebraic group G on a smooth irreducible symplectic variety X we associate certain combinatorial invariants: Cartan space, Weyl group, weight and root lattices. For cotangent bundles these invariants essentially coincide with those arising in the theory of equivarant embeddings. Using our approach we establish some properties of the latter invariants.
متن کامل